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Abstract

A constitutive relationship for high strength concrete in triaxial monotonic and cyclic compressions is developed

based on the continuum damage mechanics. The bounding surface concept is employed in the formulation of the

theoretical model. An experimental program was undertaken in order to establish databases for high strength concrete

under triaxial monotonic and cyclic compressions. The stress-strain responses of high strength concrete subjected to

triaxial monotonic and cyclic compressions were acquired through an experimental program. Comparison of the stress

strain results indicates good agreement between the theoretical model and the experimental data. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Constitutive relationships for normal strength concrete in monotonic and cyclic compression (uniaxial
and biaxial) have been developed in many publications (Fafitis and Shah, 1986). Employment of continuum
damage mechanics for development of constitutive relationships stems from the fact that the damage-
mechanics-based models have been able to accurately account for the microcracking and softening behavior
of concrete (Krajcinovic and Selvaraj, 1983; Mazars and Cabot, 1989). Theories based purely on the theory
of plasticity pertain to materials exhibiting strains as a consequence of slip in their shear planes. Damage in
concrete is associated with progressive evolution and nucleation of microcracks. This invalidates formu-
lation of theories that are solely based on plasticity models. A survey of the technical literature yields a
number of damage-based theories for normal strength concrete. Early work pertained to the quantification
of damage in terms of vectors and tensors (Krajcinovic and Fonseka, 1981; Ortiz, 1985). Chow and Wang
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(1987) developed the underlying mathematical framework for the general case of anisotropic damage.
Fardis et al. (1983) proposed a bounding surface concept for damage in concrete based on the principles
previously employed in conjunction with metallic materials (Dafalias, 1986). Based on physical evidence,
Voyiadjis and Abu-Lebdeh (1993) realized that the kinematics of damage in tension and in compression are
governed by different sets of variables. By using the bounding surface concept they were able to characterize
damage accurately and develop corresponding constitutive relationships for concrete. Such theories have
not yet been developed for high strength concrete, in cyclic loading (Li and Ansari, 1999). Accordingly, the
objective of the work presented here is to establish an accurate constitutive relationship for high strength
concrete in triaxial monotonic and cyclic compressions.

2. Failure surface

The failure surface for high strength concrete was developed by least square fit of the experimental data
to the four parameter constitutive model of Ottosen (1977) in Ansari and Li (1998). The coordinate system
and the deviatoric plane shown in Fig. 1 can be used for defining the various elements of the failure surface.
For this purpose, any point P ðr1; r2; r3Þ in the stress space is described by the coordinates ðn; q; hÞ in which
n is the projection on the hydrostatic axis, and ðq; hÞ are polar coordinates in the deviatoric plane which is
orthogonal to the hydrostatic axis. Compressive stresses are considered positive, The failure surface can
be completely described by the compressive (h ¼ 0�, r1 ¼ r2 < r3) and the tensile (h ¼ 60�, r1 ¼ r2 > r3)
meridians.

The failure criterion can be described in terms of the invariants in the following form:

F ðrijÞ ¼ A
J2

ðf 0
cÞ

2
þ k

ffiffiffiffi
J2

p

f 0
c

� B
I1
f 0
c

� 1 ¼ 0; ð1Þ

where,

k ¼ k1 þ k2 cos 3h; ð2Þ

cos 3h ¼ 3
ffiffiffi
3

p

2

J3
J 3=2
2

: ð3Þ

F is the failure function, i.e. F ðrijÞ < 0 corresponds to the stress states inside the failure surface, or
F ðrijÞ ¼ 0, and ðdf =drÞðI1; J2; cos 3hÞP 0 corresponds to the failure state. I1 is the first invariant of the
stress tensor, J2 and J3 pertain to the deviatoric principal stress invariants, i.e.:

I1 ¼ r1 þ r2 þ r3 ¼ rii; ð4Þ

Fig. 1. (a) Haigh-Westergaard coordinate system and (b) deviatoric plane.
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J2 ¼ 1
2
s21
�

þ s22 þ s23
�
¼ 1

2
sijsij; ð5Þ

J3 ¼ 1
3
s31
�

þ s32 þ s33
�
¼ 1

3
sijsjkski: ð6Þ

rij is the stress tensor, and sij is the stress deviator tensor (i.e., sij ¼ rij � ð1=3Þdijrkk). The hydrostatic and
deviatoric planes are represented by:

n ¼ I1ffiffiffi
3

p ; ð7aÞ

q ¼
ffiffiffiffiffiffiffi
2J2

p
: ð7bÞ

n and q can be used for defining the failure surface in terms of the compressive and tensile meridians. A, B,
k1, and k2 are the four parameters in the failure criterion that were determined in Ansari and Li (1998).

3. Theoretical analysis

In this section, theoretical formulations are presented based on the bounding surface damage theory
leading to the development of constitutive relationships for high strength concrete. The damage bounding
surface concept stems from the idea that for concrete at a given level of damage, the monotonic and cyclic
failure stresses coincide. This implies that both the monotonic and cyclic loading states share a unique
innermost envelope in the stress space. From which both loading types depend for higher loadings. The
onset of damage is described by an initial surface indicating the damage threshold limit for the material.
The bounding surface pertains to the failure state of the material. The position of the loading surface in the
stress space between the initial and the bounding surfaces describe the various levels of damage states.
However, the material is considered undamaged when the loading surface lies inside the initial fracture
surface.

3.1. Bounding surface damage concept for high strength concrete

The failure surface of normal strength concrete was employed in the development of the damage
bounding surface concept for normal strength concrete (Voyiadjis and Abu-Lebdeh, 1993). The experi-
mental works of Karsan and Jirsa (1969), Cedolin et al. (1977), Buyukozturk and Tseng (1984), Kosovos
and Newman (1980), and Kupfer et al. (1969) have been considered for the development of the failure
criterion. In the present work, the failure surface for high strength concrete (Eq. (1)) is modified to include
the effect of damage both for monotonic as well as cyclic loading conditions. Accordingly, the damage
bounding surface is described by the function F which is a function of stress state rij as:

F ðrij;DÞ ¼ A
J2

f 0
c

� �2 þ k

ffiffiffiffi
J2

p

f 0
c

þ B
I1
f 0
c

� gðDÞ ¼ 0: ð8Þ

In which gðDÞ is a function related to damage. The damage parameter D represents the accumulated
damage experienced by the material at each level of evolution. Experimental results were employed for the
construction of the damage surfaces in the orthotropic plane (Fig. 2). The bounding surface encloses all the
loading surfaces. In Fig. 2, b ¼ f 0

t =f
0
c , r0

c is the damage threshold stress in uniaxial compression, and r0
t is

the damage threshold stress in uniaxial tension. The meridians of the initial damage surface are closed,
They consist of three distinct zones: (1) tension zone, in which the damage threshold surface (f0 ¼ 0) nears
the bounding surface, representing brittle behavior of high strength concrete; (2) tension–compression zone,
in which the hardening zone gradually increases; (3) high confining compression zone, in which the damage
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threshold surface starts to close up producing a large hardening zone. However, once the loading has
surpassed the initial damage surface, both the size and the shape of the loading surfaces (f ¼ 0) vary from
the closed to the final shape (bounding surface). According to the nonuniform hardening rule (Desai and
Siriwardance, 1984), each loading surface can be characterized by a shape factor K and expressed in the
form:

f ðrij;DÞ ¼ A
J2

ðf 0
cÞ

2
þ Kk

ffiffiffiffi
J2

p

f 0
c

þ K2B
I1
f 0
c

� K2gðDÞ ¼ 0: ð9Þ

The initial damage surface is expressed in the following form:

f ðrij;DÞ ¼ A
J2

ðf 0
cÞ

2
þ Kk

ffiffiffiffi
J2

p

f 0
c

þ K2B
I1
f 0
c

� K2 1

�
þ D0

60

�
¼ 0; ð10Þ

where, D0 is the accumulated damage ðDÞ at the beginning of any cycle. It should be noted that when
D0 ¼ 0, Eq. (10) reduces to the initial damage surface in monotonic loading. The shape factor K is assumed
to be a function of the hydrostatic stress I1 and the hardening parameter K0. According to the experimental
results presented here the functional dependence of the damage growth rate on the separation between the
loading surface and the bounding surface controls the damage growth of concrete.

The functional form of K is derived on the basis of a nonuniform hardening rule taking into consid-
eration the basic shape requirements for the initial damage surface as well as the subsequent loading surface

Fig. 2. Construction of bounding, loading, basic, and threshold damage surface.
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on the meridian plane. This is implemented by introducing the basis surface (FB ¼ 0) which has no physical
meaning, yet it is useful in formulating the initial damage surface. The basis surface does not intersect the
negative hydrostatic axis. It is given in the following format:

FBðrijÞ ¼ A
J2

ðf 0
cÞ

2
þ KBk

ffiffiffiffi
J2

p

f 0
c

þ K2
BB

I1
f 0
c

� K2
B ¼ 0; ð11Þ

where, KB ¼ �rrt=f 0
t , is the hardening parameter for the basis surface. �rrt is the equivalent stress in tension and

the root of Eq. (11), i.e.:

�rrt ¼
�k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4AðBI1 � 1Þ

q
2ðBI1 � 1Þ

ffiffiffiffi
J2

p
: ð12Þ

The shape factor is a function of I1 and the hardening parameter K0. Based on the experimental results
shown in Fig. 2, K varies, its value depends on the loading as:

K ¼ KB; �Ig 6 I1 6 3b; ð13Þ

K ¼ K0ðaI21 þ bI1 þ cÞ; �Ig 6 I1 6 Iu; ð14Þ

where,

Ig ¼
�rrc

f 0
c

: ð15Þ

In which, �rrc is the equivalent stress in compression that has the same form as Eq. (12), Iu is the intersection
of the loading surface with the negative hydrostatic axis, and f 0

t is the tensile strength of concrete. Iu
corresponds to the effect of confining pressure on the axial strength and is empirically determined from the
experimental results as:

Iu ¼
2:8

1� K0

: ð16Þ

Iu approaches infinity as the loading surface nears the bounding surface, i.e., K0 ! 1. The hardening pa-
rameter K0 has a value between Ki and 1, where Ki indicates the hardening level of the initial damage
surface, and K0 ¼ 1 indicates that the loading surface has reached the bounding surface, so that failure
occurs. K0 is empirically determined from the uniaxial properties of the high strength and is given as:

K0 ¼ 1� 0:6
E
E0

� �2

; ð17aÞ

where, E0 is the initial Young’s modulus (normalized with respect to the uniaxial compressive strength), E is
the tangent modulus (normalized with respect to the uniaxial compressive strength), and it is:

E ¼ E0ffiffiffiffiffiffiffi
0:6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �rr

f 0
c

s
: ð17bÞ

The function K in Eq. (14) is assumed to be quadratic in I1 satisfying the shape requirements:

K ¼ KB; I1 ¼ �Ig;
K ¼ K0; I1 ¼ �1;
K ¼ 0; I1 ¼ �Iu:

8<
: ð18Þ
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From Eq. (18) one obtains the parameters in Eq. (14) as follows:

a ¼ ð1�IgÞ�ð1�IuÞð1�KB=K0Þ
ð1�IuÞ	ð1�IgÞ	ðIu�IgÞ ;

b ¼ ð1�I2u Þa�1

1�Iu
;

c ¼ 1� aþ b:

8><
>: ð19Þ

3.2. Evaluation of damage

Previous investigators employed experimental evidence in order to distinguish the damage characteristics
of normal strength concrete in terms of tensile and compressive stress states. While some investigators
suggested averaging of the tensile and compressive damages in the formulation of damage function (Ma-
zars, 1986), others derived separate relationships for the two states of stress (Voyiadjis and Abu-Lebdeh,
1993). Experimental evidence was used to justify the separation of tensile and compressive modes of
cracking. Tensile cracks are created by direct extension, whereas in compression the crack extensions are
perpendicular to the direction of applied stress. Accordingly, different damage loading surfaces are needed
to consider the growth of damage due to tension Dt, and that of the compression Dc. The present study
employs this same approach for characterization of damage in high strength concrete. To implement this,
the stress tensor is decomposed into a positive and a negative (compression) tensor rþ and r� respectively
such that:

r ¼ rþ þ r� ð20Þ
and

trr ¼ trrþ þ trr�; ð21Þ
where rþ is built with the positive eigenvalues which appear only in positive principal stresses. It can be
obtained by removing the eigensystem associated with negative eigenvalues from r, whereas, r� is built
with the negative eigenvalues which appear only in the negative principal stresses. Damage can be tensile,
compressive or a combination of the two in complex loading situations. The loading surface, Eq. (9), can be
expressed by using separate expressions for the tensile and compressive damage as:

fl ¼ AJ2ðlÞ þ kK
ffiffiffiffiffiffiffiffi
J2ðlÞ

p
þ K2BI1ðlÞ � K2gðlÞ D

� �
¼ 0; l ¼ t; c; ð22Þ

for tensile damage, l ¼ t and:

J2ðlÞ ¼ Jþ
2 ;

I1ðlÞ ¼ Iþ1 ;

gl D
� �

¼ 1þ Dt;

Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1t þ D2
2t þ D2

3t

q
;

for compressive damage, l ¼ c and therefore:

J2ðlÞ ¼ J�
2 ;

I1ðlÞ ¼ I�1 ;

gl D
� �

¼ 1þ Dc

20
;
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Dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1c þ D2
2c þ D2

3c

q
;

where, Dt and Dc are parameters related to the damage principal values of damage tensor. ðD1t;D2t;D3tÞ and
ðD1c;D2c;D3cÞ are the principal values of damage tensor in tension and compression respectively. Ac-
cordingly, the damage growth rates in tension and compression grow independent of each other. In terms of
the individual flow rules they are evaluated as:

_DDij


 �
¼ _LL

ofl
orij

; ð23Þ

where the subscript l is interchanged with t, or c for tension and compression as they pertain. In Eq. (23) _LL is
the projection of the stress rate _rrij onto the direction of the normal to the loading surface ofl=orij. Hence:

_LL ¼ 1

h
ofl rij;D
� �
ormn

_rrmn; ð24Þ

where h is the damage modulus and will be defined later. Substitution of Eq. (24) into Eq. (23) yields the
damage growth rate:

_DDij


 �
l
¼ 1

hl

ofl
orij

ofl
ormn

_rrmn; l ¼ t; c: ð25Þ

Evaluation of Eq. (25) involves differentiation of the loading surface (22), with respect to stress, rij:

ofl
orij

¼ A
oJðlÞ
orij

þ k
oK
orij

ffiffiffiffiffiffiffiffi
J2ðlÞ

p
þ kK

1

2
ffiffiffiffiffiffiffiffi
J2ðlÞ

p oJ2ðlÞ
orij

þ BK2 oI1ðlÞ
orij

� 2BK
oK
orij

I1ðlÞ � 2K
oK
orij

gðlÞ D
� �

ð26Þ

or

ofl
orij

¼ Mlsij þ Nldij; ð27Þ

where, dij is the Kronecker delta,

Ml ¼ Aþ kK
1

2
ffiffiffiffiffiffiffiffi
J2ðlÞ

p ; ð28aÞ

Nl ¼ k
ffiffiffiffiffiffiffiffi
J2ðlÞ

p
þ BK2 � 2K BI1ðlÞ

�
þ gðlÞ D

� ��
�aa: ð28bÞ

In which

�aa ¼
ffiffi
2

p

�rrtf 0t
rij; �Ig 6 I1 6 3b;

K0ð2aI1 þ bÞ; �Iu 6 I1 6 � Ig:

(
ð28cÞ

Substitution of Eq. (27) into Eq. (25) yields the damage growth rate as:

_DDij


 �
l
¼ 1

hl
M2

ðlÞsijsmn _rrmn

h
þ N 2

ðlÞdij _rrmn þMðlÞNðlÞðdijsmn _rrmn þ sij _rrmnÞ
i
: ð29Þ

The damage modulus h is expressed in terms of the distance d connecting a stress point on the loading
surface and the corresponding point on the hydrostatic line. The damage modulus should have the fol-
lowing properties:
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1. Within and on the initial damage surface, i.e., ðdin � dÞP 0 the damage modulus is infinite. At this stage,
when the loading surface is inside the initial damage surface ðd < dinÞ damage growth would not occur.

2. Beyond the initial damage surface, the damage modulus h decreases with the distance, d. When the load-
ing surface approaches the bounding surface the damage modulus reduces to zero causing the failure.

The damage modulus expressions ht and hc (for tension and compression) are derived from the exper-
imental results, and conform with the properties outlined above:

ht ¼ 0:075E0I1
1

dþ � dþ
in

� �
 !2:03

; ð30aÞ

hc ¼ 0:045E0I1
1

d� � d�
in

� �
 !2:03

; ð30bÞ

where, h i is the Heaviside function; dþ, d� are the normalized distances from the points on the loading
surface (in tension and compression) to the hydrostatic line respectively; dþ

in, d�
in are the normalized dis-

tances from the points on the initial damage surface in tension and compression to the hydrostatic line
respectively.

Concrete exhibits softening. Considering that it is plastically stable, softening is solely attributed to the
evolution of damage. Softening is modeled by computing the damage modulus (h) on the basis that the
stress point moves on the bounding surface. The damage modulus is evaluated from the consistency
condition of the bounding surface ð _FF Þ as:

�hhl ¼ �ql
1

D
Dij

oF
oD

of
orij

; ð31Þ

where, �hhl is the damage modulus at bounding surface (i.e., softening modulus), l ¼ c, t; qc ¼ 0:002E0I1; and
qt ¼ 0:000029ðE0=I1Þ; are empirical correction factors; and oF =oD ¼ g0ðDÞ.

3.3. Constitutive relationships

The strain tensor for high strength concrete is derived from the complementary free-energy function in
terms of the hydrostatic stress I1, the deviator stress tensor sij, damage tensor Dij in the following form:

deij ¼
oeij
oI1

dI1 þ
oeij
oskl

dskl þ
oeij
oDkl

dDkl: ð32Þ

Due to the fact that the stress tensor is separated into its positive and negative eigenvalues, the strain tensor
is presented in a likewise manner in the following format:

deij ¼ Ch dI1dij þ Cijkl dskl þ dCI
ijkls

þ
kl þ dCII

ijkls
�
kl; ð33Þ

where CI
ijkl is the compliance tensor corresponding to tensile stresses; CII

ijkl is the compliance tensor corre-
sponding to compressive stresses. They are determined by decomposition of the compliance tensor as:

Cijkl ¼ CI
ijkl þ CII

ijkl; ð34aÞ

dCI
ijkl ¼

oCI
ijkl

oDmn
dDmn; ð34bÞ
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dCII
ijkl ¼

oCII
ijkl

oDmn
dDmn; ð34cÞ

Ch is the bulk compliance. All the compliance tensors are determined from the present experimental results
as presented in the following:

Ch ¼
1

3

3ð1� 2mÞ
E0

; ð35aÞ

½CI
 ¼ 1

E0

1
ð1�aD11Þ

�m �m
1

ð1�aD22Þ
�m

symmetric 1
ð1�aD33Þ

2
64

3
75; ð35bÞ

½CII
 ¼ 1

E0

1
ð1�cD11Þ

�m �m
1

ð1�cD22Þ
�m

symmetric 1
ð1�cD33Þ

2
64

3
75: ð35cÞ

The rate compliance matrices for tensile and compressive stresses dCI and dCII are derived from Eqs. (35b)
and (35c) as:

½dCI
 ¼

dD11

ð1�aD11Þ2
0 0

dD22

ð1�aD22Þ2
0

symmetric dD11

ð1�aD33Þ2

2
664

3
775; ð36aÞ

½dCII
 ¼

dD11

ð1�cD11Þ2
0 0

dD22

ð1�cD22Þ2
0

symmetric dD11

ð1�cD33Þ2

2
664

3
775; ð36bÞ

where a ¼ 2:0 and c ¼ 1:3 are determined from the fit to experimental data for monotonic loading. For
cyclic loading the unloading and reloading moduli (denoted as Eu and Er respectively) are determined from
the experimental results as below:

Eu ¼
1:3E0

1� D
; ð37aÞ

Er ¼ 1:1Eu: ð37bÞ

It should be noted that in the unloading regime there will be no accumulation of damage. Whereas in
reloading it keeps increasing to the stress point on the bounding surface of this circle with a speed given in
Eqs. (29) and (30a,b) by replacing E0 with Er only.

4. Verification of the model

The theoretical formulations was examined by comparisons with experimental results. The experimental
program included two primary loading configurations, namely triaxial monotonic and cyclic compressions.
One nominal compressive strength of 10 ksi (69 MPa) was considered in the experimental program. The
mix of the concrete is indicated in Table 1.
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4.1. Testing procedure

The complete stress strain responses were obtained in a stiff frame servo-hydraulic closed loop testing
system. The testing frame had a load capacity of 1000 kips (4600 KN). A microcomputer provided the
command signals and dada for the closed-loop control of the experiments. A triaxial pressure vessel capable
of applying a maximum confining pressure of 12,000 psi (83 MPa) on 4� 8 in. (101� 202 mm) cylindrical
specimens was employed for triaxial tests. A confining pressure intensifier was used to fill and pressurize the
triaxial cell and to provide servo-control of the confining fluid in the triaxial cell. In-vessel pressure and
displacement transducers were applied for the control of the servo-valve through computer commands. The
4� 8 in. (101� 202 mm) cylindrical specimens were jacketed with a rubber membrane in order to prevent
penetration of fluid into the specimen during pressurization. The confining effect of the rubber membrane
on the axial stresses was examined by way of comparing the uniaxial compressive strengths of jacketed and
bare specimens as an average 7% increase in axial strengths. The effect of rubber membrane on the axial
strength of specimens was subsequently taken into account by this amount.

An in-vessel two-extensometer assembly with a gauge length of 2 in. was employed for measurements of
axial strains. For the load path, the axial and confining pressures were simultaneously applied to the
specimens at the rate of 4 ksi/min until the confining pressures reached the targeted values. At this point the
confining pressure was kept constant at the target value. Then the axial stress was increased at a constant
displacement rate of 0.00082 in./s (0.021 mm/s) for the triaxial monotonic compression (Fig. 3), whereas the

Table 1

Specimen mix proportions per cubic yard (m3)

Design strength, ksi (MPa) 10 (69)

Concrete designation HS10

Cement, lb. (kg) 768 (456)

Fly ash, lb. (kg) 0

Silica fume, lb. (kg) 92 (55)

Water, lb. (kg) 276 (164)

Aggregate, lb. (kg) 1690 (1001)

Sand, lb. (kg) 1298 (770)

High Range Water Reducer, l 2.6

Total weight, lb. (kg) 4110 (2438)

(w/cement) ratio 0.36

(w/cementitous) ratio 0.32

Fig. 3. Loading path.
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axial stress was increased and decreased at a constant displacement rate of 0.00082 in./s (0.021 mm/s) every
0.02 in. (0.0508 mm) deformation for triaxial cyclic compression. A limited number of specimens were
tested under cyclic loading conditions.

4.2. Experimental results

The failure strength, confinement ratio and strain ratio at failure for the high strength concrete speci-
mens are given in Ansari and Li (1998). Average mechanical properties of the specimen in uniaxial tension
and compression are given in Table 2. In this table, f 0

c is the uniaxial compressive strength, m is the Poisson’s
ratio, E0 refers to the modulus of elasticity in compression. Fitted parameter values of failure criterion are
indicated in Table 3.

Theoretical and experimental stress strain relationships under triaxial monotonic and cyclic compres-
sions are compared in Figs. 4 and 5 respectively. In Fig. 4, the two curves correspond to confining pressures
of 2 ksi (14 MPa) and 10 ksi (69 MPa) respectively. It should be noted that the simulation for the initial
stiffness of the second curve is not so good. The reason may be that this part corresponds to the higher
hydrostatic compression, and the model may not predict its behavior very well. Fig. 5 corresponds to
confining pressure of 2 ksi (14 MPa).

As shown in these figures, the results are in good agreement between the theoretical and experimental
stress strain relationships.

5. Conclusions

The following conclusions are drawn based on the findings of this study:

1. The empirical failure criterion based on the four parameter model of Ottosen (1977) is valid also for high
strength concrete.

2. The proposed bounding surface is able to portray the mechanism of damage in high strength concrete
and therefore yields an appropriate constitutive model for the material in triaxial monotonic and cyclic
compressions.

It is therefore possible to employ the constitutive relationship established here for the prediction of the
stress strain response. Experimental evidence indicated good agreement between the theoretical model and

Table 2

Average mechanical properties of high strength concrete in compression

Specimen designation HS10

f 0
c , ksi 10.31

E0, ksi 8:7� 103

m 0.15

1 ksi ¼ 6:895 MPa.

Table 3

Fitted parameter values of failure criterion

A B k1 k2

HS10 15.9870 7.1636 10.218 6.2038
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Fig. 4. Comparison of the theoretical and experimental stress strain relationships for 10 ksi (69 MPa) strength concrete in triaxial

monotonic compression.

Fig. 5. Comparison of the theoretical and experimental stress strain relationships for 10 ksi (69 MPa) strength concrete in triaxial cyclic

compression with confining pressure ¼ 2 ksi (14 MPa).
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the experimental stress strain relationships. However, data are still limited and more experimental results
are required especially for the behavior under biaxial states of stress.
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